

Town of New Shoreham (Block Island)

Project Stakeholder Meeting - Corn Neck Road Resilience Strategy and Dune Restoration

PRESENTED BY:

GZA GeoEnvironmental, Inc. & Right Turn Solutions August 4th, 2025

TODAY'S AGENDA

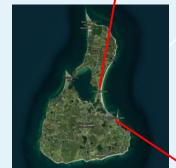
- Project Update
- Summary of Vulnerability Analysis
- Discussion of Mitigation Strategies/ Solutions
- Review of Conceptual Designs
- Next Steps
- Open Discussion

INTRODUCTIONS

- Town of New Shoreham
 - Alison Ring Town Planner/ Project Manager
 - Amy Lewis Land Interim Town Manager
 - James Geremia Town Engineer
 - Mike Shea DPW Director
 - Judy Gray Chair of the Coastal Resiliency Committee

- GZA GeoEnvironmental
 - Michael Gardner Project Manager
 - Matthew Page Associate Principal/ Principal-in-Charge
 - Russell Morgan Senior Principal / Consultant Reviewer
 - Rosemarie Fusco Planning Specialist

- Right Turn Solutions (RTS)
 - Jenn Giardino Public Outreach


UPDATE

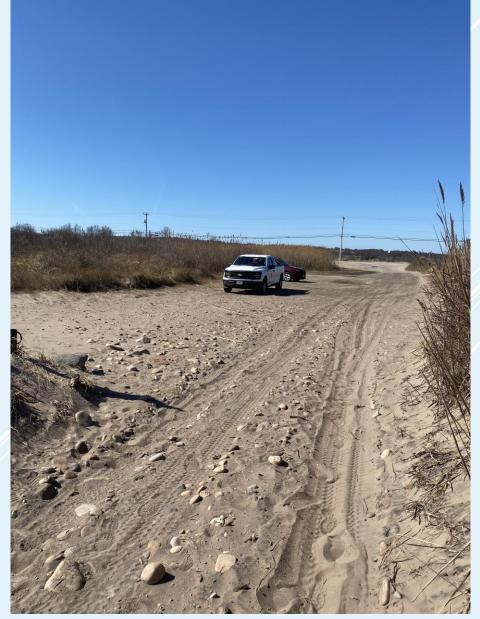
- Last Meeting: May 15th, 2025
 - Vulnerability Analysis Presentation
- Current Meeting: August 4th, 2025
 - Discussion of Mitigation Strategies/ Solutions and Conceptual Designs
- Next Steps:
 - Conceptual Design Selection

PROJECT BACKGROUND & OBJECTIVES

- The primary objective is to bolster the long-term resilience of the barrier beach and salt marsh system while protecting the existing roadway. The chosen approach should effectively mitigate the threats posed by erosion, rising sea levels, and storm events by promoting sediment accretion, stabilizing shorelines, and enhancing the overall capacity of the system to withstand dynamic coastal processes.
- Overarching Goals: Identify short term goals that can be built upon – phased approach
 - 1. Protect Corn Neck Road
 - 2. Protect the Town beach pavilion and parking area
 - 3. Maintain beach access and dunes
 - 4. Habitat preservation

KEY AREAS

Identified by Stakeholders and Vulnerability Analyses



KEY AREAS

Scotch Beach Rd

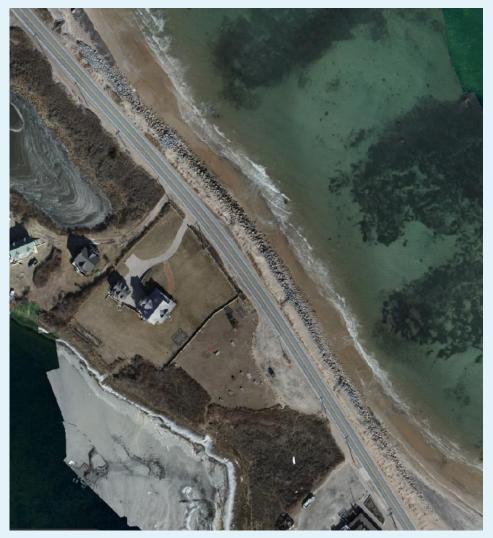
KEY

Dune Paths

AREAS

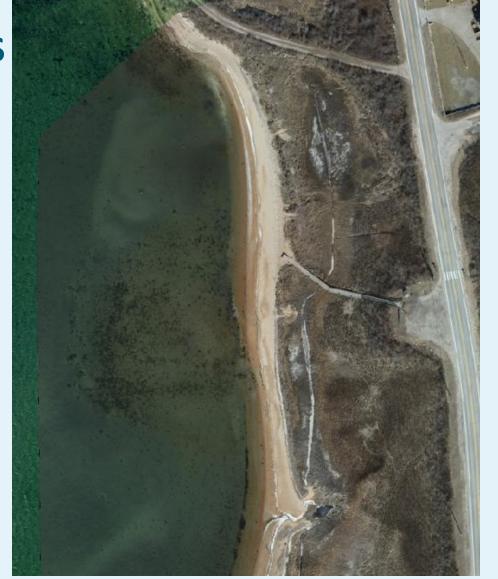
Town Beach Parking

KEY AREAS



KEY AREAS

Revetment

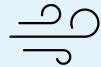


KEY AREAS

Mosquito Beach/ Marsh

VULNERABILITY OVER TIME

Hazards


Large Precipitation Events Flooding Due to High Coastal Water Levels

High Wind

Large Waves

Storm Transformation Based on Stillwater Elevation with Projected NOAA 2022 Intermediate SLR

Present Day Storm Event Annual Exceedance Probability	Equivalent 2050 Storm Event Annual Exceedance Probability	Equivalent 2070 Storm Event Annual Exceedance Probability
1-Year	<1-Year	<1-Year
2-Year	1-Year	<1-Year
5-Year	2-Year	1-Year
10-Year	2 to 5-Year	1 to 2-Year
20-Year	5 to 10-Year	2-Year
50-Year	20-Year	10-Year
100-Year	50-Year	20-Year

Toolbox Options Include (interdisciplinary options):

Category

Natural & Nature-Based Features (NNBFs)

Hybrid Shoreline Protections

Dune Restoration & Vegetation

Green Infrastructure

Permeable Surfaces

Elevation & Relocation

Access Management

Example Strategies / Techniques

Beach nourishment, dune enhancement, thin layer deposition living shorelines (e.g., coir logs, marsh edge plantings)

Vegetated reinforced dunes, cobble berms, low-profile revetments, buried rock toe

Dune fencing, beachgrass planting (Ammophila breviligulata), sand recycling and topographic repair

Bioswales, infiltration basins, vegetated filter strips, rain gardens

Porous pavement/ pavers, true grid systems, shell/gravel base lots

Raise above design storm + sea level rise; retreat from high-hazard/low-lying areas

Toolbox Options Include (interdisciplinary options):

Category

Natural & Nature-Based Features (NNBFs)

Hybrid Shoreline Protections

Dune Restoration & Vegetation

Green Infrastructure

Permeable Surfaces

Elevation & Relocation

Access Management

Example Strategies / Techniques

Beach nourishment, dune enhancement, thin layer deposition living shorelines (e.g., coir logs, marsh edge plantings)

Vegetated reinforced dunes, cobble berms, low-profile revetments, buried rock toe

Dune fencing, beachgrass planting (Ammophila breviligulata), sand recycling and topographic repair

Bioswales, infiltration basins, vegetated filter strips, rain gardens

Porous pavement/ pavers, true grid systems, shell/gravel base lots

Raise above design storm + sea level rise; retreat from high-hazard/low-lying areas

Toolbox Options Include (interdisciplinary options):

Category

Natural & Nature-Based Features (NNBFs)

Example Strategies / Techniques

Beach nourishment, dune enhancement, thin layer deposition living shorelines (e.g., coir logs, marsh edge plantings)

Toolbox Options Include (interdisciplinary options):

Category

Natural & Nature-Based Features (NNBFs)

Hybrid Shoreline Protections

Dune Restoration & Vegetation

Green Infrastructure

Permeable Surfaces

Elevation & Relocation

Access Management

Example Strategies / Techniques

Beach nourishment, dune enhancement, thin layer deposition living shorelines (e.g., coir logs, marsh edge plantings)

Vegetated reinforced dunes, cobble berms, low-profile revetments, buried rock toe

Dune fencing, beachgrass planting (Ammophila breviligulata), sand recycling and topographic repair

Bioswales, infiltration basins, vegetated filter strips, rain gardens

Porous pavement/ pavers, true grid systems, shell/gravel base lots

Raise above design storm + sea level rise; retreat from high-hazard/low-lying areas

Toolbox Options Include (interdisciplinary options):

Category

Hybrid Shoreline Protections

Example Strategies / Techniques

Vegetated reinforced dunes, cobble berms, low-profile revetments, buried rock toe

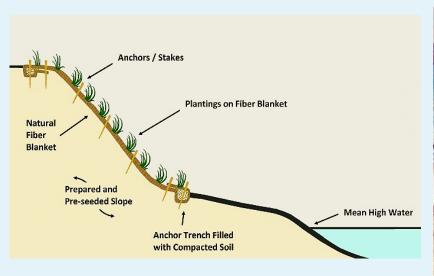


Photo Credit: Stone Living Lab

Toolbox Options Include (interdisciplinary options):

Category

Natural & Nature-Based Features (NNBFs)

Hybrid Shoreline Protections

Dune Restoration & Vegetation

Green Infrastructure

Permeable Surfaces

Elevation & Relocation

Access Management

Example Strategies / Techniques

Beach nourishment, dune enhancement, thin layer deposition living shorelines (e.g., coir logs, marsh edge plantings)

Vegetated reinforced dunes, cobble berms, low-profile revetments, buried rock toe

Dune fencing, beachgrass planting (Ammophila breviligulata), sand recycling and topographic repair

Bioswales, infiltration basins, vegetated filter strips, rain gardens

Porous pavement/ pavers, true grid systems, shell/gravel base lots

Raise above design storm + sea level rise; retreat from high-hazard/low-lying areas

Toolbox Options Include (interdisciplinary options):

Category

Dune Restoration & Vegetation

Dune fencing, beachgrass planting (Ammophila breviligulata),

sand recycling and topographic repair

Toolbox Options Include (interdisciplinary options):

Category

Natural & Nature-Based Features (NNBFs)

Hybrid Shoreline Protections

Dune Restoration & Vegetation

Green Infrastructure

Permeable Surfaces

Elevation & Relocation

Access Management

Example Strategies / Techniques

Beach nourishment, dune enhancement, thin layer deposition living shorelines (e.g., coir logs, marsh edge plantings)

Vegetated reinforced dunes, cobble berms, low-profile revetments, buried rock toe

Dune fencing, beachgrass planting (Ammophila breviligulata), sand recycling and topographic repair

Bioswales, infiltration basins, vegetated filter strips, rain gardens

Porous pavement/ pavers, true grid systems, shell/gravel base lots

Raise above design storm + sea level rise; retreat from high-hazard/low-lying areas

Toolbox Options Include (interdisciplinary options):

Category

Green Infrastructure

https://online.encodeplus.com/regs/deq-va/doc-viewer.aspx?secid=1130#secid-1130

Example Strategies / Techniques

Bioswales, infiltration basins, vegetated filter strips, rain

gardens

https://dep.nj.gov/wp-content/uploads/stormwater/bmp/nj_swbmp_9.7-small-scale-bior

Toolbox Options Include (interdisciplinary options):

Category

Natural & Nature-Based Features (NNBFs)

Hybrid Shoreline Protections

Dune Restoration & Vegetation

Green Infrastructure

Permeable Surfaces

Elevation & Relocation

Access Management

Example Strategies / Techniques

Beach nourishment, dune enhancement, thin layer deposition living shorelines (e.g., coir logs, marsh edge plantings)

Vegetated reinforced dunes, cobble berms, low-profile revetments, buried rock toe

Dune fencing, beachgrass planting (Ammophila breviligulata), sand recycling and topographic repair

Bioswales, infiltration basins, vegetated filter strips, rain gardens

Porous pavement/ pavers, true grid systems, shell/gravel base lots

Raise above design storm + sea level rise; retreat from high-hazard/low-lying areas

Toolbox Options Include (interdisciplinary options):

Category

Permeable Surfaces

Example Strategies / Techniques

Porous pavement/ pavers, true grid systems, shell/gravel base lots

Photo Credit: Green Giant

Toolbox Options Include (interdisciplinary options):

Category

Natural & Nature-Based Features (NNBFs)

Hybrid Shoreline Protections

Dune Restoration & Vegetation

Green Infrastructure

Permeable Surfaces

Elevation & Relocation

Access Management

Example Strategies / Techniques

Beach nourishment, dune enhancement, thin layer deposition living shorelines (e.g., coir logs, marsh edge plantings)

Vegetated reinforced dunes, cobble berms, low-profile revetments, buried rock toe

Dune fencing, beachgrass planting (Ammophila breviligulata), sand recycling and topographic repair

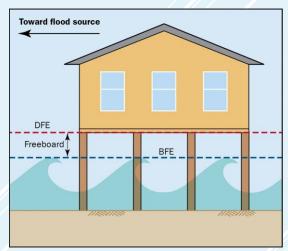
Bioswales, infiltration basins, vegetated filter strips, rain gardens

Porous pavement/ pavers, true grid systems, shell/gravel base lots

Raise above design storm + sea level rise; retreat from high-hazard/low-lying areas

Toolbox Options Include (interdisciplinary options):

Category


Elevation & Relocation

Example Strategies / Techniques

Raise above design storm + sea level rise; retreat from high-hazard/low-lying areas

Toolbox Options Include (interdisciplinary options):

Category

Natural & Nature-Based Features (NNBFs)

Hybrid Shoreline Protections

Dune Restoration & Vegetation

Green Infrastructure

Permeable Surfaces

Elevation & Relocation

Access Management

Beach nourishment, dune enhancement, thin layer deposition living shorelines (e.g., coir logs, marsh edge plantings)

Vegetated reinforced dunes, cobble berms, low-profile revetments, buried rock toe

Dune fencing, beachgrass planting (Ammophila breviligulata), sand recycling and topographic repair

Bioswales, infiltration basins, vegetated filter strips, rain gardens

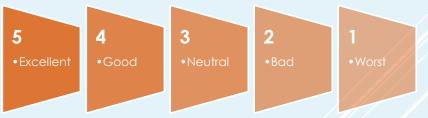
Porous pavement/ pavers, true grid systems, shell/gravel base lots

Raise above design storm + sea level rise; retreat from high-hazard/low-lying areas

Toolbox Options Include (interdisciplinary options):CategoryExa

Access Management

Example Strategies / Techniques



CONCEPTUAL DESIGN EVALUATION CRITERIA

Concepts rated 1 through 5, with 5 being most favorable on the following categories:

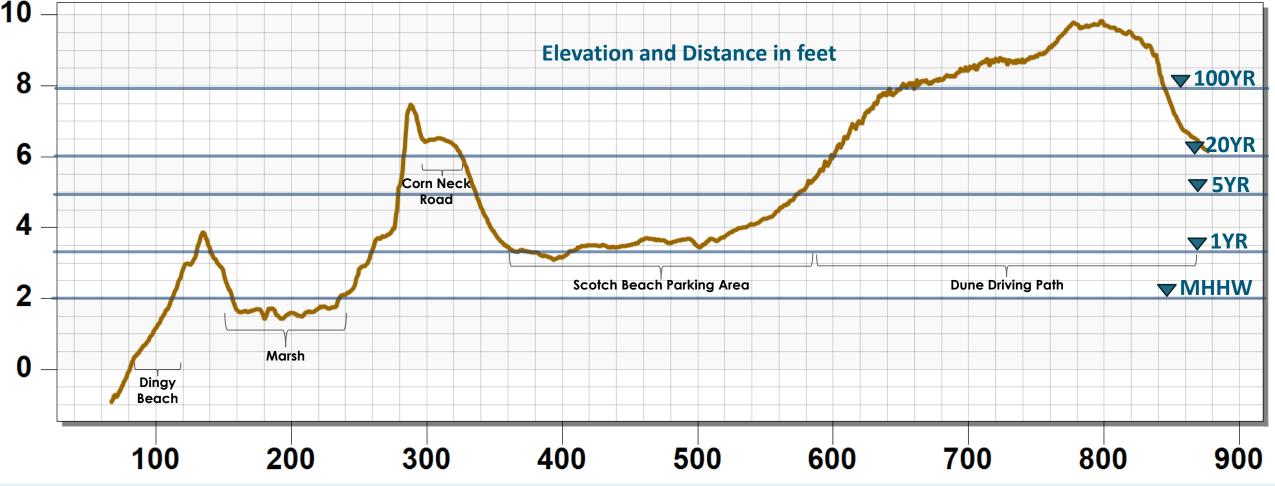
VULNERABILITIES- SCOTCH BEACH ROAD

Frequent Flooding:

- Scotch Beach parking lot floods during even minor rain events.
- Flooding is caused by:
 - Poor drainage
 - Low elevations (near-surface groundwater and SLR)
 - Approximately 5-acre watershed area
 - Compacted soils.

Storm Flooding

- Significant precipitation flooding occurs approximately during the 1-year event and greater
- Flooding is also caused by caused by:
 - Wave Runup and Overtopping (waves run down the roadway through the dunes)



VULNERABILITIES- SCOTCH BEACH ROAD

Recent Examples (Water Level, ft NAVD88):

- Superstorm Sandy 2012 (6.1ft)
- Hurricane Bob 1991 (5.8ft)
- December 23, 2022 Storm (5.2ft)
- January 13, 2024 Storm (5.2ft)
- The Perfect Storm, 1991 (5.1ft)

CONCEPTUAL DESIGN 1 - SCOTCH BEACH ROAD

Pervious Pavers and Stormwater Best Management Practices (BMPs)

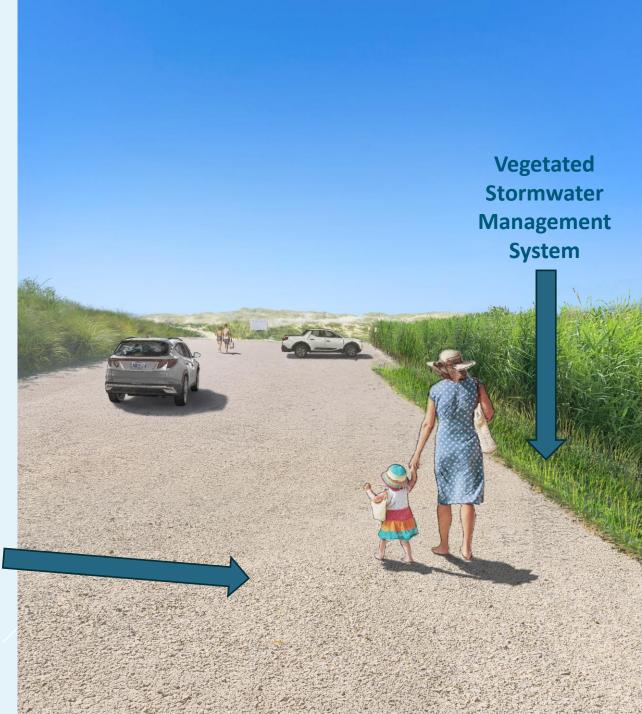
- Fill and Regrading
- Permeable Pavers
- Vegetated Swale

CONCEPTUAL DESIGN 2 - SCOTCH BEACH ROAD

Parking Retrofit with Integrated Stormwater Management System and Swale

- Fill and Regrading
- Vegetated Stormwater
 Management System
- Vegetated Swale

CONCEPTUAL DESIGN 2 – SCOTCH BEACH ROAD (BEFORE)



CONCEPTUAL DESIGN 2 – SCOTCH BEACH ROAD (AFTER)

Grade Raised,
Sloped Towards the Wetland

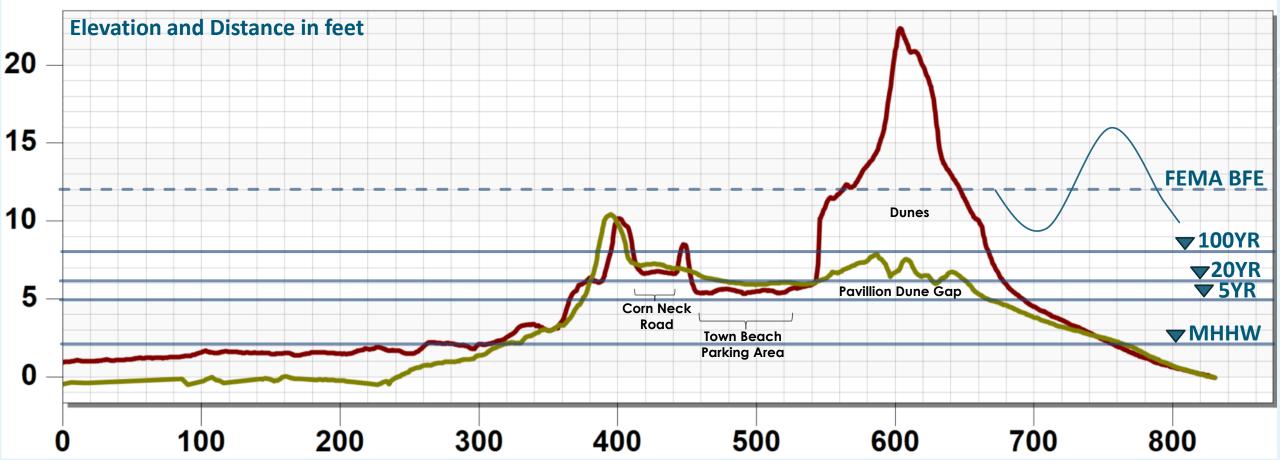
VULNERABILITIES- TOWN BEACH PARKING AREA

Frequent Flooding:

- Parking lots flood during even minor rain events.
- Flooding is caused by:
 - Poor drainage
 - Low elevations (near-surface groundwater and SLR)
 - Approximately 5-acre watershed area
 - Compacted soils

Storm Flooding

- Significant precipitation flooding occurs approximately during the 1month event and greater
- Flooding is also caused by caused by:
 - Wave Runup and Overtopping through low-lying areas where the beach pavilion interrupts the dune system



VULNERABILITIES- TOWN BEACH PARKING AREA

Recent Examples (Water Level, ft NAVD88):

- Superstorm Sandy 2012 (6.1ft)
- Hurricane Bob 1991 (5.8ft)
- December 23, 2022 Storm (5.2ft)
- January 13, 2024 Storm (5.2ft)
- The Perfect Storm, 1991 (5.1ft)

CONCEPTUAL DESIGN 1 – TOWN BEACH PARKING AREA

Pervious Pavers and Stormwater Best Management Practices (BMPs)

- Fill and Regrading
- Pervious Pavers
- Vegetated Swale

VEGETATED

PERVIOUS PAVERS

SWALE

CONCEPTUAL DESIGN 2 – TOWN BEACH PARKING AREA

Parking Retrofit with Integrated Stormwater Management System and Swale

- Fill and Regrading
- Vegetated Stormwater Management System
- Vegetated Swale

RECOMMENDED CONCEPTUAL DESIGN – TOWN BEACH PARKING AREA (BEFORE)

RECOMMENDED CONCEPTUAL DESIGN – TOWN BEACH PARKING AREA (AFTER)

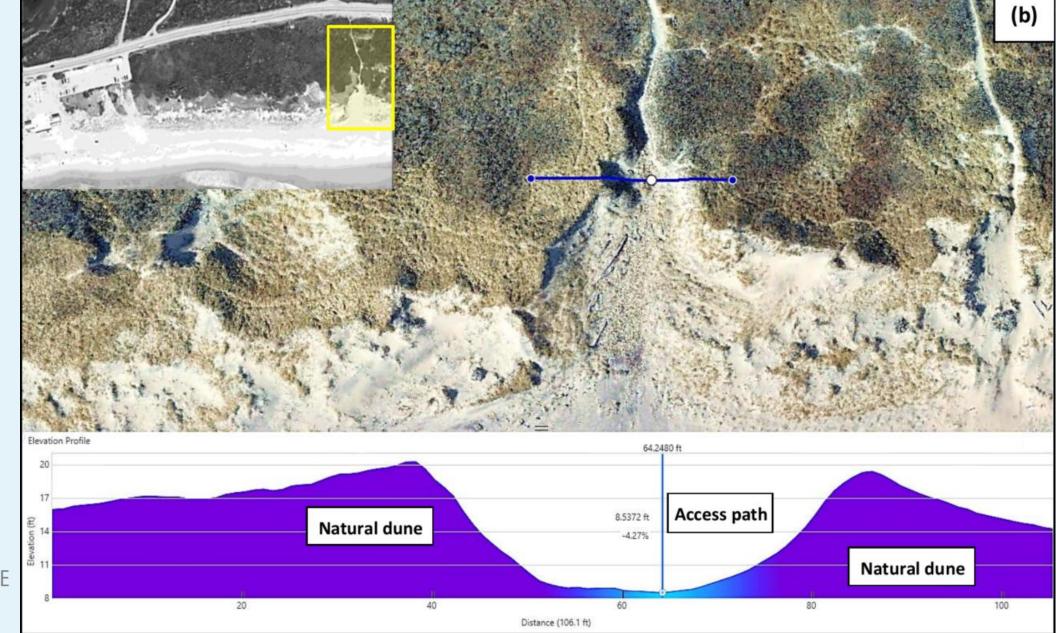
DESIGN

VULNERABILITIES- DUNE PATHWAYS

Pedestrian Damage:

- Dune damage is caused by:
 - Foot and vehicle traffic disturbing vegetation
 - Foot and vehicle traffic moving sand, flattening and widening pathways
 - Traffic "fanning-out" on the beach side of the paths

Coastal Storm Damage:


- Storm waves running up the beach or directly impacting the dunes
- Waves are able to run-up the beach further along flattened pathway areas and eroding sand

VULNERABILITIES- DUNE PATHWAYS

CONCEPTUAL DESIGN 1 – DUNE PATHWAYS

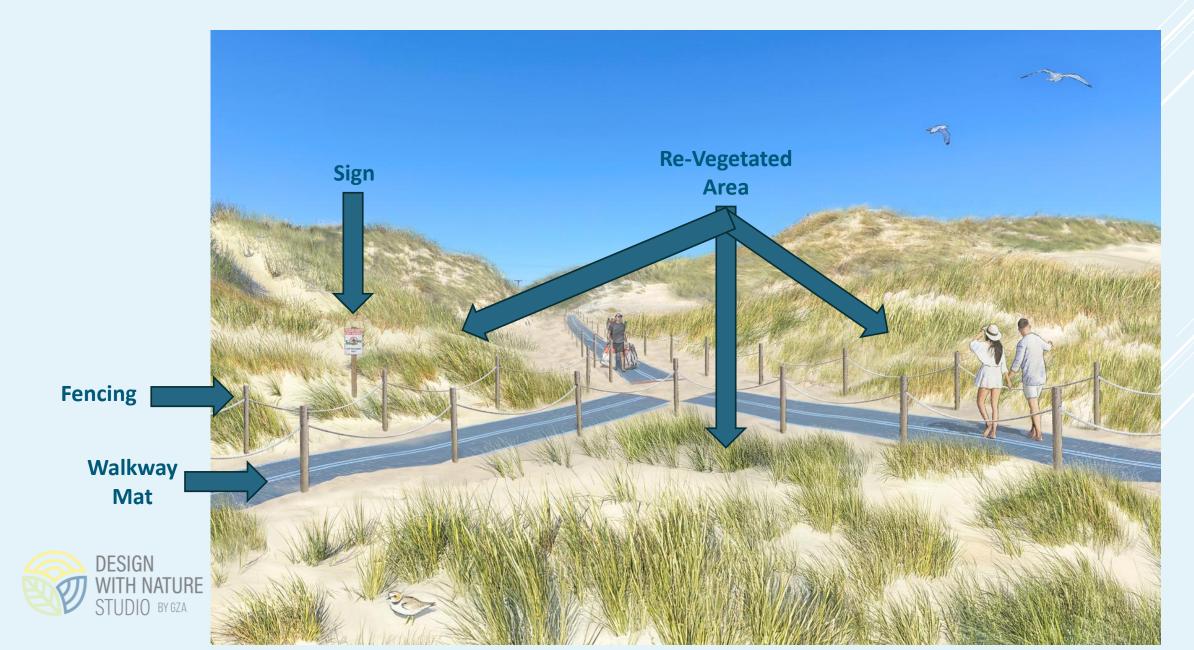
Simple Pathway and Dune Protection

- Pathway Redirection
- Fencing
- Plantings
- Walkway Mats

CONCEPTUAL DESIGN 2 – DUNE PATHWAYS

Pathway Closure and Opening

- Simple Fencing
- Plantings
- Pathway Cycling Planning



CONCEPTUAL DESIGN 1 – DUNE PATHWAYS (BEFORE)

CONCEPTUAL DESIGN 1 – DUNE PATHWAYS (AFTER)

MASTER PLAN PHASED APPROACH

Phase 1

0-5 years

Phase 2

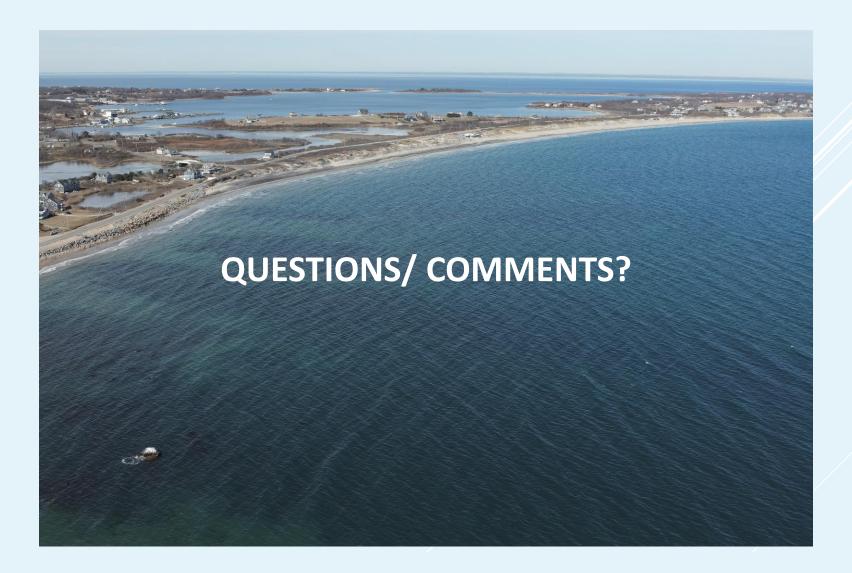
• 5-10 years

Phase 3

• 10+ years

NEXT STEPS

- Conceptual design alternatives
 - Select top concepts at three (3) areas of concern
 - Assess concepts through coastal modeling
- Advance Select Designs to Construction



BREAKOUT GROUPS

